Dr. Phelps is the inventor of the Positron Emission Tomography (PET) scanner. With UCLA colleagues and students, he developes in vivo biochemical assays for PET to provide molecular imaging diagnostics of the biology of disease. Dr. Phelps is a member of the National Academy of Science and the National Academy of Medicine, published 720 peer-reviewed articles and 4 textbooks, and has been the principal investigator of $245 million in grants. He has received recognition for his scholarship, such as George von Hevesy Prize, Chaired the 1983 Nobel Symposium; S. Weir Mitchell Award, Academy of Neurology; Rosenthal Foundation Award, American College of Physicians; the Enrico Fermi Presidential Award by President Clinton; Kettering Prize, General Motors Cancer Research Foundation; gave the Keynote Address, 2007 Nobel Symposium. Read his full bio.

Interview with Michael Phelps of UCLA

Q: You invented the PET scanner that changed the lives of millions of patients with cancer, brain and heart diseases. What are the potential benefits to patients of combining PET with radio-ablation technologies?

A: PET provides imaging assays of the biology of disease in many diseases today. It provides these assays with imaging probes in near massless amounts – tracers – that do not impose any significant mass effects on patients nor the biological process being assayed. About 60 million clinical PET studies have been performed without a reported complication due to the imaging probe.

While there is an ever-increasing diversity in PET imaging probes and assays they provide, more recently, there has been an increase in assays demonstrating the capability to phenotype cancer cells in patients to determine whether the protein targets for radioablation are expressed on the cancer cells. This approach is referred to as Theranostics, in which the probe is labeled with a radioisotope for PET imaging, and the same probe is labeled with long-lived radioisotopes that emit beta or alpha particles for radio-ablation of cancer cells. These diagnostic- therapy combinations have moved from pre-clinical research to clinical trials to clinical practice with remarkable therapeutic benefit for patients. These probes are small peptides, small molecules, and antibodies. In both cases, the probe is injected IV and travels throughout all tissues of the body to locate and bind to the target protein for imaging or treatment. For example, prostate cancer cells express the Prostate Specific Membrane Antigen (PSMA) that is targeted with PET imaging to select patients for treatment with 177Lu or 225Ac labeled probe. Patients without the target do not qualify for the treatment. After treatment, PET imaging is used to determine if the cancer cells have been ablated. Thus, PET imaging of target expression provides measurement for stratification of patients for radioablation treatment.

If one uses a signal (responders) to noise (nonresponders) analysis to assess the relative number of patients needed in a therapy trial where a molecular diagnostic is used to enrich the patient population in responders, the following relative advantage can be achieved:

If the patient population has 20% responders (normal for treatment trials), 100 patients are required for the therapy trial.

If a molecular diagnostic provides enrichment to 40% responders, 25 patients are required.

If a molecular diagnostic provides enrichment to 80% responders, 7 patients are required.

This reduces the cost and time for trials by these same factors, and spares exposure of patients to risk of the therapeutic without adding value to the trial. Of course, this same benefit is realized by integrating the molecular diagnostic and therapeutic in-patient care. Theranostics demonstrates this realization in trials and patient care.

Q: Immunotherapy agents are rapidly changing the standard of care in cancer. How can PET immuno-oncology imaging be used to improve cancer care?

A: Immunotherapeutics are fundamentally different from other treatment modalities because they involve the patient’s immune system. PET provides two key advantages – the capability to detect very specific molecules (such as the CD markers on immune cells, or specific nutrients/metabolites intrinsic to immune system activation), along with the ability to examine all cells throughout the body of patients for these target molecules.

PET imaging of glycolysis with [18F]deoxyglucose (FDG) is fundamental to differentiating health and disease because of the defining importance of glucose metabolism, as well as assays for specific diseases (e.g. cancer, Alzheimer’s, etc.). There are, however, many specific diagnostic – treatment decisions requiring assays of specific biological processes.

Immunotherapeutics represent one of many examples requiring specific PET imaging assays to answer specific clinical questions that define treatment selection and assessment of treatment responses. This area of PET imaging is called ImmunoPET. Novel PET probes for immunotherapeutics include nucleoside analogs for assessing shifts in metabolism that occur preferentially in just the immune cells. Another class of tracers are immunoPET probes, based on antibodies or engineered antibody fragments (e.g., minibodies & diabodies) that detect specific markers on key cells such as the CD8 cytotoxic T cells that directly kill tumor cells. This area of ImmunoPET imaging is being used to assess the checkpoints that block immune responses, as demonstrated by groups in Europe using radiolabeled versions of the FDA-approved drugs nivolumab and atezolizumab.

Importantly, using newer PET probes to detect specific immune cell types, or assess molecular markers of immune system activation, can provide a faster and much more specific readout as to whether an immunotherapy is working, compared to current clinical imaging which focuses on non-specific assessment of tumor size (e.g., CT & MRI cannot differentiate malignant, necrotic & edematous tissues). The availability of specific readouts of immune system activation can help physicians and patients determine which immunotherapies to use, and how well they are working.

Q: What are the current challenges and opportunities for PET technological advances in clinical and preclinical imaging?

A: The greatest challenge for providing the unique PET molecular imaging of the biology of disease is to overcome dogma and fixed beliefs. The dogma in medical imaging is still that imaging tumor lesions is more relevant than PET molecular imaging assays of the biology of disease, and as being demonstrated in Theranostics, imaging tumor phenotypes and ImmunoPET imaging, as well as enzyme assays of many metabolic processes. This is evidenced by the insistence of regulatory bodies that sill use non-specific lesion size changes (e.g., lesions in cancer can increase in size during treatment due to necrosis (cell death) that are mistakenly judged as a treatment failure) as outcome markers in cancer therapy trials. This needs to be changed to use PET molecular imaging of the biological processes of disease and phenotyping of cancer cells through the body. Disease is a biological process and treatments are fundamentally designed to modify or terminate the biology of disease. Today, almost all PET scanners are PET/CT or PET/MRI that can simultaneously provide both the biological and traditional sizing of lesions.

Because of the risk of therapies, clinical trials must begin at the latest, and most complex stage of disease that is most difficult to treat. New in vivo and in vitro molecular diagnostics informative of the critical and controlling phenotypes of disease provide the means to lead therapeutics to earlier and less complex stages of disease where treatment can be more effective, and as discussed above, to enrich the patient population with responders with all the benefits this provides.

PET imaging assays have the capability to interrogate all cells throughout the body of patients for the expression of therapeutic targets to provide an informative and productive benefit in developing more effective therapies, and providing direct measures of their pharmacologic effectiveness.

Q: Can you give some examples how PET technology has helped in the development of new pharmaceuticals?

A: There are many and growing examples of the informative value of PET molecular imaging of the biology of disease in the development and use of new therapeutics. An illustrative example of the many attributes provided by PET are in the use of labeled peptides, small molecules, and antibodies to phenotype tumor cells of patients for radioablation of cancer, as discussed above. For example, 68GA-DOTATATE is used with PET for targeting cancer cells expressing the somatostatin receptor that are treated with therapeutic analogue 177Lu-DOTATATE with remarkable therapeutic benefit that has now been FDA approved and reimbursed. Following this are diagnostic and therapeutic combinations for prostate cancer targeting PSMA in FDA trials, although already used in patient care in Germany and Australia. These Theranostic results will be presented.

There is an ever-increasing world-wide growth in academic and commercial Theranostics, including ~ $6B in acquisitions of Theranostics companies by pharmaceutical companies over the last year.

There is, however, ever increasing progress in integrating in vivo and in vitro molecular diagnostics of the biology of disease with therapeutics that target critical proteins of disease to guide the discovery and development of therapies, and to bring them integrated together into the practice of medicine.

Interview with Gabriel Bien-Willner of Palmetto GBA

Q: What does your role entail as the director of the MolDX program at Palmetto GBA?

A: The job directing MolDX is multifaceted; first and foremost the MolDX program is responsible for assessing molecular diagnostic tests on the market and makes coverage and pricing determinations for such tests and technology. This is usually done through local coverage determination policies or technical assessments.

Read More

Interview with Peter Marks of FDA

Q: The CBER’s Regenerative Medicine Advanced Therapy Designation program has been very successful, with about 100 requests for designation in the two years of its existence. Can you please tell us about the program and how it was put together?

A: The Regenerative Medicine Advanced Therapy (RMAT) Designation program came into being as part of the 21st Century Cures Act that was signed into law on December 13, 2016.

Read More

Interview with Calum MacRae of Harvard Medical School

Q: What patient data do we need to better understand the underlying cause of disease and how to prevent it?

A: Medicine at present is highly underdetermined and data poor. To be precise, one must be comprehensive, so medicine (with our consent) will use not only what we currently conceive of as biomedical information, but also data from across our lives.

Read More

Headlines from PMWC 2019 Silicon Valley

A big ‘Thank You’ to all of our presenters and attendees for celebrating 10 years of precision medicine progress with us! PMWC 2019 Silicon Valley was attended by 2000 participants from 35 countries, which included over 400 speakers in 5 parallel tracks!

Read More

Interview with Ken Bloom of Ambry Genetics

Q: Tell us more about your organization/company. What patient population are you serving and which services are you specializing in?

A: Ambry Genetics is a recognized leader in high quality complex genetic testing. We seek to find the genomic cause or contributors to rare diseases, abnormal phenotypes and hereditary disorders.

Read More

Interview with Lee Pierce of Sirius Computer Solutions

Q: What is the state of big data and analytics in healthcare, and how to best use the reams of data available?

A: More than ever, Healthcare organizations are achieving measurable value through use of their data and analytics assets. There is more raw material available than ever to create value. This raw material is the data flowing from internal systems and applications and also from devices and systems external to healthcare organizations.

Read More

Interview with Anita Nelsen of PAREXEL

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: Today’s emerging technologies are making the promise of individualized treatment a reality.

Read More

Interview with Ilan Kirsch of Adaptive Biotechnologies

Q: The Nobel Prize in Medicine was awarded recently to James Allison and Tasuku Honjo for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” What is your first-hand experience the impact that those new drugs had on patients?

A: For decades cancer was viewed as solely a cell-autonomous condition.

Read More

BMS buys Celgene | Lilly buys Loxo Oncology – Does this Signal a Return to Strong Deal-Making Activities in 2019?

Bristol-Myers Squibb’s blockbuster $74B deal to buy Celgene creates an oncology powerhouse amid industrywide excitement about the rapidly evolving science and explosive growth of the sector. The agreement could signal a return to deal-making for the pharmaceutical industry in the $133B global oncology therapeutics market.

Read More

Interview with Gini Deshpande of NuMedii

Q: What need is NuMedii addressing?

A: NuMedii, has been pioneering the use of Big Data, artificial intelligence (AI) and systems biology since 2010 to accelerate the discovery of precision therapies to address high unmet medical needs. Artificial Intelligence approaches are a natural fit to harness Big Data as they provide a framework to ‘train’ computers to recognize patterns and sift through vast amounts of new and existing genomic

Read More

Interview with Minnie Sarwal of UCSF

Q: Genomic medicine is entering more hospitals and bringing with it non-invasive technology that can be used to better target and treat diseases. What are some key milestones that contributed to this trend?

A: Completion of complete sequence data from the human genome project, and the advances in proteomic, microRNA and epigenetic assays added a layer of pathway biology to the understanding of human diseases.

Read More

Interview with Shidong Jia of Predicine

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling for clinical Dx. How soon, do you think, will we see accelerated growth and what can we expect?

A: We will see accelerated human genome profiling for clinical Dx in 2019 and the coming years as more biomarker-based cancer drugs are gaining approval.

Read More

Interview with Iya Khalil of GNS Healthcare

Q: Artificial intelligence (AI) techniques have sent vast waves across healthcare, even fueling an active discussion of whether AI doctors will eventually replace human physicians in the future. Do you believe that human physicians will be replaced by machines in the foreseeable future? What are your thoughts?

A: I think that there’s a lot of speculation and uncertainty around AI, but I don’t foresee a time when we won’t need physicians.

Read More

Interview with Ilya Michael Rachman of Immix Biopharma Inc.

Q: The Nobel Price in Medicine was awarded recently to James Allison and Tasuku for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” Besides CAR T-cell therapy what do you think next generation immunotherapies will look like to successfully combat cancer?

A: The next generation of immunotherapies will build on the insights discovered by immunologists like James Allison and Tasuku Honjo and extend them to modify the body’s response to tumors.

Read More

Join me to Kick off PMWC Silicon Valley in the Santa Clara Convention Center, Focusing on Every Element of Precision Medicine

My team worked in collaboration with Bill Dalton, Kim Blackwell, Atul Butte / India Hook Barnard, Nancy Davidson and Sharon Terry to create a program that touches every component of precision medicine while bringing together all of its key stakeholders. Leading participating institutions including Stanford Health Care, UCSF, Duke Health, Duke University, John Hopkins University, University of Michigan and more will share their learnings and experiences and their successes and challenges, as they make precision medicine the new standard of care for all.

Read More
Johns Hopkins
University Of Michigan

The Precision Medicine World Conference (PMWC), in its 17th installment, will take place in the Santa Clara Convention Center (Silicon Valley) on January 21-24, 2020. The program will traverse innovative technologies, thriving initiatives, and clinical case studies that enable the translation of precision medicine into direct improvements in health care. Conference attendees will have an opportunity to learn first-hand about the latest developments and advancements in precision medicine and cutting-edge new strategies and solutions that are changing how patients are treated.

See 2019 Agenda highlights:

  • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
    • AI & Data Science Showcase
    • Clinical & Research Tools Showcase
    • Clinical Dx Showcase
    • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
    • Digital Health/Health and Wellness
    • Digital Phenotyping
    • Diversity in Precision Medicine
    • Drug Development (PPPs)
    • Early Days of Life Sequencing
    • Emerging Technologies in PM
    • Emerging Therapeutic Showcase
    • FDA Efforts to Accelerate PM
    • Gene Editing
    • Genomic Profiling Showcase
    • Immunotherapy Sessions & Showcase
    • Implementation into Health Care Delivery
    • Large Scale Bio-data Resources to Support Drug Development (PPPs)
    • Microbial Profiling Showcase
    • Microbiome
    • Neoantigens
    • Next-Gen. Workforce of PM
    • Non-Clinical Services Showcase
    • Pharmacogenomics
    • Point-of Care Dx Platform
    • Precision Public Health
    • Rare Disease Diagnosis
    • Resilience
    • Robust Clinical Decision Support Tools
    • Wellness and Aging Showcase

See 2019 Agenda highlights:

    • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
      • AI & Data Science Showcase
      • Clinical & Research Tools Showcase
      • Clinical Dx Showcase
      • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
      • Digital Health/Health and Wellness
      • Digital Phenotyping
      • Diversity in Precision Medicine
      • Drug Development (PPPs)
      • Early Days of Life Sequencing
      • Emerging Technologies in PM
      • Emerging Therapeutic Showcase
      • FDA Efforts to Accelerate PM
      • Gene Editing / CRISPR
      • Genomic Profiling Showcase
      • Immunotherapy Sessions & Showcase
      • Implementation into Health Care Delivery
      • Large Scale Bio-data Resources to Support Drug Development (PPPs)
      • Microbial Profiling Showcase
      • Microbiome
      • Neoantigens
      • Next-Gen. Workforce of PM
      • Non-Clinical Services Showcase
      • Pharmacogenomics
      • Point-of Care Dx Platform
      • Precision Public Health
      • Rare Disease Diagnosis
      • Resilience
      • Robust Clinical Decision Support Tools
      • Wellness and Aging Showcase
  • Luminary and Pioneer Awards, honoring individuals who contributed, and continue to contribute, to the field of Precision Medicine
  • 2000+ multidisciplinary attendees, from across the entire spectrum of healthcare, representing different types of companies, technologies, and medical centers with leadership roles in precision medicine
Get Updates
Sign up for occasional updates on upcoming conferences, news, and other information.
We respect your privacy and will never share your email with anyone.
Something went wrong, please verify your input.
Thank you for signing up!

Get Exclusive Access to the Top PMWC Talks

To receive the most comprehensive news and updates from the field of precision medicine, subscribe to the newsletter here.

Bonus for suscribing, you will get the access code for the top 3 talk videos from January's Precision Medicine World Conference.

You have successfully subscribed, you can access the talks here.