Dr. Zhang’s lab at MIT is focused on using synthetic biology to develop technologies for genome and epigenome engineering to study neurobiology. Zhang played a central role in the development of both CRISPR technology and optogenetics, a biological technique that uses light to control cells in living tissue, usually neurons. Zhang’s group optimized the Cas9 system in human cells starting in 2011. They then compared their RNA expression approach with a design based on the Doudna / Charpentier chimeric RNA for use in human cells and established features of the guide necessary for Cas9 to function effectively in mammalian cells. Read his full bio.

Interview with Feng Zhang, PMWC 2019 Honoree- Neurobiologist Who Led the Development of Optogenetics and CRISPR

Q: What research are you or your lab focusing on and why, and what problem(s) are you trying to solve?

A: Our overall driving goal is to improve human health, and we do this largely through the development of new tools to study basic biology and the discovery of novel therapeutic approaches to treating human diseases.

Q: What excites you about your work?

A: There is a strong element of discovery to what we are doing – from finding novel microbial proteins that have never been studied before to figuring out an elegant solution to a technical problem at the bench – these moments where we know we are really on to something that will make a difference are the most exciting for me.

Q: Your lab was the first to successfully adapt CRISPR-Cas9 for genome editing in eukaryotic cells. Can you tell us how this came about? 

A: I had been working on tools for genome engineering as a Junior Fellow at Harvard, and when I first started my independent group at the Broad Institute, I went to a seminar talk and heard about microbial adaptive immune systems known as CRISPR. The tools I had been working with were powerful but difficult to use, and I had been thinking a lot about how to make them easier to work with. CRISPR systems naturally solved the main challenge – the enzyme that targets DNA is guided to a specific sequence by a short, complementary RNA (by contrast, the enzymes I was working with recognized DNA sequences through amino acid residues, which meant the whole protein had to be re-engineered for each new target). I was immediately intrigued and started to read all I could about CRISPR systems, and trying to figure out how these systems could be harnessed for use in mammalian cells. Within days, I had started to work on it at the bench, and tried to be as systematic as possible in tackling the challenges of moving this bacterial system into mammalian cells.

Q: How will genome-editing affect health care and what are some of the key advancements that will positively impact the field? By when can we expect more routing applications in the clinic, agriculture, and other?

A: I think genome editing has already started to affect health care by accelerating the pace at which basic research in mammalian systems can be done. For example, it is possible to make a new mouse model of disease in a few months or less, whereas it used to take a year or more. Moreover, we can now easily create patient-specific mutations to better understand the molecular consequences of these changes. Another application of CRISPR systems is molecular diagnostics, and some of these platforms are already being deployed in the field to help monitor infectious disease outbreaks. Outside of health care, genome editing is being applied to a number of problems in agriculture, where it can significantly speed up the breeding process, a major bottleneck for improving crops.

Q: Recently the CRISPR technology has been challenged as a flurry of articles casted doubt on the overall safety as it can introduce imprecise, off-target modifications in the genome which can be a problem. a. What are your thoughts on this? b. How severe is the issue and can it be overcome?

A: There are still many open questions about the safety and efficacy of CRISPR-based therapeutics, and as a field, we are working to address these. For example, we and others have engineered more specific variants of Cas nucleases that exhibit very little off-target effects. Others are exploring the potential immunogenicity of CRISPR components, which will be very important to address before this technology can be used therapeutically. Clinical trials using CRISPR-based therapeutics in limited contexts are beginning this year, and as we see data from these studies, we will get a much clearer picture of what the outstanding challenges are.

Q: What are the short-term challenges that your scientific field is facing?

A: We need additional approaches for delivering CRISPR-based therapeutics (and other cellular and genetic therapies). We are currently quite limited in our ability to target specific organs and tissue types, and until we solve this, we will not be able to realize the potential of genome editing.

Interview with Gabriel Bien-Willner of Palmetto GBA

Q: What does your role entail as the director of the MolDX program at Palmetto GBA?

A: The job directing MolDX is multifaceted; first and foremost the MolDX program is responsible for assessing molecular diagnostic tests on the market and makes coverage and pricing determinations for such tests and technology. This is usually done through local coverage determination policies or technical assessments.

Read More

Interview with Peter Marks of FDA

Q: The CBER’s Regenerative Medicine Advanced Therapy Designation program has been very successful, with about 100 requests for designation in the two years of its existence. Can you please tell us about the program and how it was put together?

A: The Regenerative Medicine Advanced Therapy (RMAT) Designation program came into being as part of the 21st Century Cures Act that was signed into law on December 13, 2016.

Read More

Interview with Calum MacRae of Harvard Medical School

Q: What patient data do we need to better understand the underlying cause of disease and how to prevent it?

A: Medicine at present is highly underdetermined and data poor. To be precise, one must be comprehensive, so medicine (with our consent) will use not only what we currently conceive of as biomedical information, but also data from across our lives.

Read More

Headlines from PMWC 2019 Silicon Valley

A big ‘Thank You’ to all of our presenters and attendees for celebrating 10 years of precision medicine progress with us! PMWC 2019 Silicon Valley was attended by 2000 participants from 35 countries, which included over 400 speakers in 5 parallel tracks!

Read More

Interview with Ken Bloom of Ambry Genetics

Q: Tell us more about your organization/company. What patient population are you serving and which services are you specializing in?

A: Ambry Genetics is a recognized leader in high quality complex genetic testing. We seek to find the genomic cause or contributors to rare diseases, abnormal phenotypes and hereditary disorders.

Read More

Interview with Lee Pierce of Sirius Computer Solutions

Q: What is the state of big data and analytics in healthcare, and how to best use the reams of data available?

A: More than ever, Healthcare organizations are achieving measurable value through use of their data and analytics assets. There is more raw material available than ever to create value. This raw material is the data flowing from internal systems and applications and also from devices and systems external to healthcare organizations.

Read More

Interview with Anita Nelsen of PAREXEL

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: Today’s emerging technologies are making the promise of individualized treatment a reality.

Read More

Interview with Ilan Kirsch of Adaptive Biotechnologies

Q: The Nobel Prize in Medicine was awarded recently to James Allison and Tasuku Honjo for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” What is your first-hand experience the impact that those new drugs had on patients?

A: For decades cancer was viewed as solely a cell-autonomous condition.

Read More

BMS buys Celgene | Lilly buys Loxo Oncology – Does this Signal a Return to Strong Deal-Making Activities in 2019?

Bristol-Myers Squibb’s blockbuster $74B deal to buy Celgene creates an oncology powerhouse amid industrywide excitement about the rapidly evolving science and explosive growth of the sector. The agreement could signal a return to deal-making for the pharmaceutical industry in the $133B global oncology therapeutics market.

Read More

Interview with Gini Deshpande of NuMedii

Q: What need is NuMedii addressing?

A: NuMedii, has been pioneering the use of Big Data, artificial intelligence (AI) and systems biology since 2010 to accelerate the discovery of precision therapies to address high unmet medical needs. Artificial Intelligence approaches are a natural fit to harness Big Data as they provide a framework to ‘train’ computers to recognize patterns and sift through vast amounts of new and existing genomic

Read More

Interview with Minnie Sarwal of UCSF

Q: Genomic medicine is entering more hospitals and bringing with it non-invasive technology that can be used to better target and treat diseases. What are some key milestones that contributed to this trend?

A: Completion of complete sequence data from the human genome project, and the advances in proteomic, microRNA and epigenetic assays added a layer of pathway biology to the understanding of human diseases.

Read More

Interview with Shidong Jia of Predicine

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling for clinical Dx. How soon, do you think, will we see accelerated growth and what can we expect?

A: We will see accelerated human genome profiling for clinical Dx in 2019 and the coming years as more biomarker-based cancer drugs are gaining approval.

Read More

Interview with Iya Khalil of GNS Healthcare

Q: Artificial intelligence (AI) techniques have sent vast waves across healthcare, even fueling an active discussion of whether AI doctors will eventually replace human physicians in the future. Do you believe that human physicians will be replaced by machines in the foreseeable future? What are your thoughts?

A: I think that there’s a lot of speculation and uncertainty around AI, but I don’t foresee a time when we won’t need physicians.

Read More

Interview with Ilya Michael Rachman of Immix Biopharma Inc.

Q: The Nobel Price in Medicine was awarded recently to James Allison and Tasuku for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” Besides CAR T-cell therapy what do you think next generation immunotherapies will look like to successfully combat cancer?

A: The next generation of immunotherapies will build on the insights discovered by immunologists like James Allison and Tasuku Honjo and extend them to modify the body’s response to tumors.

Read More

Join me to Kick off PMWC Silicon Valley in the Santa Clara Convention Center, Focusing on Every Element of Precision Medicine

My team worked in collaboration with Bill Dalton, Kim Blackwell, Atul Butte / India Hook Barnard, Nancy Davidson and Sharon Terry to create a program that touches every component of precision medicine while bringing together all of its key stakeholders. Leading participating institutions including Stanford Health Care, UCSF, Duke Health, Duke University, John Hopkins University, University of Michigan and more will share their learnings and experiences and their successes and challenges, as they make precision medicine the new standard of care for all.

Read More
Johns Hopkins
University Of Michigan

The Precision Medicine World Conference (PMWC), in its 17th installment, will take place in the Santa Clara Convention Center (Silicon Valley) on January 21-24, 2020. The program will traverse innovative technologies, thriving initiatives, and clinical case studies that enable the translation of precision medicine into direct improvements in health care. Conference attendees will have an opportunity to learn first-hand about the latest developments and advancements in precision medicine and cutting-edge new strategies and solutions that are changing how patients are treated.

See 2019 Agenda highlights:

  • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
    • AI & Data Science Showcase
    • Clinical & Research Tools Showcase
    • Clinical Dx Showcase
    • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
    • Digital Health/Health and Wellness
    • Digital Phenotyping
    • Diversity in Precision Medicine
    • Drug Development (PPPs)
    • Early Days of Life Sequencing
    • Emerging Technologies in PM
    • Emerging Therapeutic Showcase
    • FDA Efforts to Accelerate PM
    • Gene Editing
    • Genomic Profiling Showcase
    • Immunotherapy Sessions & Showcase
    • Implementation into Health Care Delivery
    • Large Scale Bio-data Resources to Support Drug Development (PPPs)
    • Microbial Profiling Showcase
    • Microbiome
    • Neoantigens
    • Next-Gen. Workforce of PM
    • Non-Clinical Services Showcase
    • Pharmacogenomics
    • Point-of Care Dx Platform
    • Precision Public Health
    • Rare Disease Diagnosis
    • Resilience
    • Robust Clinical Decision Support Tools
    • Wellness and Aging Showcase

See 2019 Agenda highlights:

    • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
      • AI & Data Science Showcase
      • Clinical & Research Tools Showcase
      • Clinical Dx Showcase
      • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
      • Digital Health/Health and Wellness
      • Digital Phenotyping
      • Diversity in Precision Medicine
      • Drug Development (PPPs)
      • Early Days of Life Sequencing
      • Emerging Technologies in PM
      • Emerging Therapeutic Showcase
      • FDA Efforts to Accelerate PM
      • Gene Editing / CRISPR
      • Genomic Profiling Showcase
      • Immunotherapy Sessions & Showcase
      • Implementation into Health Care Delivery
      • Large Scale Bio-data Resources to Support Drug Development (PPPs)
      • Microbial Profiling Showcase
      • Microbiome
      • Neoantigens
      • Next-Gen. Workforce of PM
      • Non-Clinical Services Showcase
      • Pharmacogenomics
      • Point-of Care Dx Platform
      • Precision Public Health
      • Rare Disease Diagnosis
      • Resilience
      • Robust Clinical Decision Support Tools
      • Wellness and Aging Showcase
  • Luminary and Pioneer Awards, honoring individuals who contributed, and continue to contribute, to the field of Precision Medicine
  • 2000+ multidisciplinary attendees, from across the entire spectrum of healthcare, representing different types of companies, technologies, and medical centers with leadership roles in precision medicine
Get Updates
Sign up for occasional updates on upcoming conferences, news, and other information.
We respect your privacy and will never share your email with anyone.
Something went wrong, please verify your input.
Thank you for signing up!

Don't Miss Important Precision Medicine Updates

PMWC is the most comprehensive precision medicine conference. To receive the lastest news and updates from the field, subscribe to the newsletter here.

View the top 3 talks from PMWC here (password: top-videos).