Derek Jantz, PhD, is the co-founder and CSO of Precision BioSciences and a 15-year veteran of the genome editing industry. As a protein engineer, he was an early developer of zinc finger technology and has spent most of his career designing proteins for genome editing applications. He performed his graduate studies in biophysics at Johns Hopkins University School of Medicine. Dr. Jantz co-founded Precision BioSciences in 2006 after co-inventing a novel method to modify the DNA-recognition properties of meganucleases. Read his full bio.

Interview with Derek Jantz of Precision BioSciences

Q: What need is Precision BioSciences addressing?

A: Precision’s ARCUS genome editing technology is a proprietary, non-CRIPSR platform that has applications across cell therapy, gene therapy, and agriculture. We are able to edit everything from plants to primates, so prioritizing projects is an imporant part of what we do. In agriculture, we are focused on enhancing nutritional value and fortifying at-risk crops. In medicine, we are developing ex vivo gene edited cell therapies that fight cancer as well as in vivo gene editing therapies targeted to the liver and the eye.

Q: What are the products and/or services Precision BioSciences offers/develops to address this need? What makes Precision BioSciences unique?

A: Our lead product is an off-the-shelf CD19 CAR T to treat acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). This is made from the T cells of healthy donors, which we edit in two ways – first, we add a receptor that targets cancerous cells and second, we knock out a receptor that mediates graph-versus-host interactions to eliminate the need for donor-patient matching. Using this method, we can generate hundreds of vials of CAR T cells from a single manufacturing run to treat patients when and where they need it. Another even newer area of genetic medicine we are excited about is in vivo therapeutic genome editing. Because the ARCUS editing platform works effectively and reproducibly in non-human primates and other large animal models, we can look beyond basic mouse studies and begin using editing to therapeutically suppress or correct expression in models that inform the development of human therapeutics.

Q: What is your role at Precision BioSciences and what excites you about your work?

A: I am the CSO of Precision BioSciences and also a co-founder, along with Matt Kane (our CEO) and Jeff Smith (our CTO). We started the company back in 2006, soon after Jeff and I created the earliest version of ARCUS, but I’d already been working in genome editing for almost 10 years by then. I have studied and worked with zinc finger nucleases, TALENs, and CRISPRs, but have always preferred the homing endonuclease (aka meganuclease), which ARCUS is based on, for therapeutic applications. The time and effort our team at Precision has put into this platform has been nothing short of heroic, and now we are seeing the pay off as we progress toward clinic in both cell and gene therapy.

Q: When thinking about Precision BioSciences and the domain Precision BioSciences is working in, what are some of the recent breakthroughs that are propelling the field forward and how will they impact healthcare?

A: The field has made real headway into editing human cells in vitro, particularly for CAR T. Several new gene edited CAR T therapies are either in the clinic or expected to enter the clinic within the next year. In vivo therapeutic editing isn’t quite as far along but there are a couple of ZFN-based therapies in very early clinical studies. We recently published a study in collaboration with the Wilson lab at Penn demonstrating, I think for the first time, high-efficiency, long-term in vivo editing in primate liver. We knocked-out the PCSK9 gene in several animals, resulting in therapeutically-relevant reductions in LDL cholesterol that are stable now well into the second year of the study. We think the study provides a blueprint for developing additional liver-targeted in vivo editing therapies using the ARCUS platform.

Q: What are the short-term challenges that Precision BioSciences and its peers are facing?

A: For the field at large, translating our success from the bench to the bedside has been challenging. Gene editing has revolutionized biomedical research, but creating bona fide in vivo therapies is a big ask and the place everyone in this space would like to go. This means creating new medicines able to cure disease by editing patient DNA at the organ or tissue of interest, preferably with a single treatment. It’s the “holy grail” of genome editing and what I have been working toward my whole career. We’re close but we aren’t there yet. The transition to large animal models – getting beyond mouse work – is a crucial step toward bringing these therapies to the clinic. And as the first wave of ex vivo edited cell therapies enter clinical trials we will gain a greater understanding of what safety risks, if any, are posed by gene editing. This, in turn, should help to clarify the regulatory path for the subsequent wave of in vivo therapeutics.

Q: Is there anything else you would like to share with the PMWC audience?

A: How soon and how completely genome editing will reshape the future of medicine are still big questions, but I am more and more confident this will happen sooner and with a bigger impact than many appreciate. As a scientist and as a person, I could not be happier to have made this my life’s work.

Interview with Gabriel Bien-Willner of Palmetto GBA

Q: What does your role entail as the director of the MolDX program at Palmetto GBA?

A: The job directing MolDX is multifaceted; first and foremost the MolDX program is responsible for assessing molecular diagnostic tests on the market and makes coverage and pricing determinations for such tests and technology. This is usually done through local coverage determination policies or technical assessments.

Read More

Interview with Peter Marks of FDA

Q: The CBER’s Regenerative Medicine Advanced Therapy Designation program has been very successful, with about 100 requests for designation in the two years of its existence. Can you please tell us about the program and how it was put together?

A: The Regenerative Medicine Advanced Therapy (RMAT) Designation program came into being as part of the 21st Century Cures Act that was signed into law on December 13, 2016.

Read More

Interview with Calum MacRae of Harvard Medical School

Q: What patient data do we need to better understand the underlying cause of disease and how to prevent it?

A: Medicine at present is highly underdetermined and data poor. To be precise, one must be comprehensive, so medicine (with our consent) will use not only what we currently conceive of as biomedical information, but also data from across our lives.

Read More

Headlines from PMWC 2019 Silicon Valley

A big ‘Thank You’ to all of our presenters and attendees for celebrating 10 years of precision medicine progress with us! PMWC 2019 Silicon Valley was attended by 2000 participants from 35 countries, which included over 400 speakers in 5 parallel tracks!

Read More

Interview with Ken Bloom of Ambry Genetics

Q: Tell us more about your organization/company. What patient population are you serving and which services are you specializing in?

A: Ambry Genetics is a recognized leader in high quality complex genetic testing. We seek to find the genomic cause or contributors to rare diseases, abnormal phenotypes and hereditary disorders.

Read More

Interview with Lee Pierce of Sirius Computer Solutions

Q: What is the state of big data and analytics in healthcare, and how to best use the reams of data available?

A: More than ever, Healthcare organizations are achieving measurable value through use of their data and analytics assets. There is more raw material available than ever to create value. This raw material is the data flowing from internal systems and applications and also from devices and systems external to healthcare organizations.

Read More

Interview with Anita Nelsen of PAREXEL

Q: There are various new, emerging technologies that bring us closer towards a cure for life-threatening disorders such as cancer, HIV, or Huntington’s disease. Prominent examples include the popular gene editing tool CRISPR or new and improved cell and gene therapies. By when can we expect these new technologies being part of routine clinical care?

A: Today’s emerging technologies are making the promise of individualized treatment a reality.

Read More

Interview with Ilan Kirsch of Adaptive Biotechnologies

Q: The Nobel Prize in Medicine was awarded recently to James Allison and Tasuku Honjo for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” What is your first-hand experience the impact that those new drugs had on patients?

A: For decades cancer was viewed as solely a cell-autonomous condition.

Read More

BMS buys Celgene | Lilly buys Loxo Oncology – Does this Signal a Return to Strong Deal-Making Activities in 2019?

Bristol-Myers Squibb’s blockbuster $74B deal to buy Celgene creates an oncology powerhouse amid industrywide excitement about the rapidly evolving science and explosive growth of the sector. The agreement could signal a return to deal-making for the pharmaceutical industry in the $133B global oncology therapeutics market.

Read More

Interview with Gini Deshpande of NuMedii

Q: What need is NuMedii addressing?

A: NuMedii, has been pioneering the use of Big Data, artificial intelligence (AI) and systems biology since 2010 to accelerate the discovery of precision therapies to address high unmet medical needs. Artificial Intelligence approaches are a natural fit to harness Big Data as they provide a framework to ‘train’ computers to recognize patterns and sift through vast amounts of new and existing genomic

Read More

Interview with Minnie Sarwal of UCSF

Q: Genomic medicine is entering more hospitals and bringing with it non-invasive technology that can be used to better target and treat diseases. What are some key milestones that contributed to this trend?

A: Completion of complete sequence data from the human genome project, and the advances in proteomic, microRNA and epigenetic assays added a layer of pathway biology to the understanding of human diseases.

Read More

Interview with Shidong Jia of Predicine

Q: Once sequencing has been validated as a clinical solution via trusted workflows, and coinciding with the technological developments driving costs lower, we can expect accelerated human genome profiling for clinical Dx. How soon, do you think, will we see accelerated growth and what can we expect?

A: We will see accelerated human genome profiling for clinical Dx in 2019 and the coming years as more biomarker-based cancer drugs are gaining approval.

Read More

Interview with Iya Khalil of GNS Healthcare

Q: Artificial intelligence (AI) techniques have sent vast waves across healthcare, even fueling an active discussion of whether AI doctors will eventually replace human physicians in the future. Do you believe that human physicians will be replaced by machines in the foreseeable future? What are your thoughts?

A: I think that there’s a lot of speculation and uncertainty around AI, but I don’t foresee a time when we won’t need physicians.

Read More

Interview with Ilya Michael Rachman of Immix Biopharma Inc.

Q: The Nobel Price in Medicine was awarded recently to James Allison and Tasuku for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. The Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” Besides CAR T-cell therapy what do you think next generation immunotherapies will look like to successfully combat cancer?

A: The next generation of immunotherapies will build on the insights discovered by immunologists like James Allison and Tasuku Honjo and extend them to modify the body’s response to tumors.

Read More

Join me to Kick off PMWC Silicon Valley in the Santa Clara Convention Center, Focusing on Every Element of Precision Medicine

My team worked in collaboration with Bill Dalton, Kim Blackwell, Atul Butte / India Hook Barnard, Nancy Davidson and Sharon Terry to create a program that touches every component of precision medicine while bringing together all of its key stakeholders. Leading participating institutions including Stanford Health Care, UCSF, Duke Health, Duke University, John Hopkins University, University of Michigan and more will share their learnings and experiences and their successes and challenges, as they make precision medicine the new standard of care for all.

Read More
Johns Hopkins
University Of Michigan

The Precision Medicine World Conference (PMWC), in its 17th installment, will take place in the Santa Clara Convention Center (Silicon Valley) on January 21-24, 2020. The program will traverse innovative technologies, thriving initiatives, and clinical case studies that enable the translation of precision medicine into direct improvements in health care. Conference attendees will have an opportunity to learn first-hand about the latest developments and advancements in precision medicine and cutting-edge new strategies and solutions that are changing how patients are treated.

See 2019 Agenda highlights:

  • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
    • AI & Data Science Showcase
    • Clinical & Research Tools Showcase
    • Clinical Dx Showcase
    • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
    • Digital Health/Health and Wellness
    • Digital Phenotyping
    • Diversity in Precision Medicine
    • Drug Development (PPPs)
    • Early Days of Life Sequencing
    • Emerging Technologies in PM
    • Emerging Therapeutic Showcase
    • FDA Efforts to Accelerate PM
    • Gene Editing
    • Genomic Profiling Showcase
    • Immunotherapy Sessions & Showcase
    • Implementation into Health Care Delivery
    • Large Scale Bio-data Resources to Support Drug Development (PPPs)
    • Microbial Profiling Showcase
    • Microbiome
    • Neoantigens
    • Next-Gen. Workforce of PM
    • Non-Clinical Services Showcase
    • Pharmacogenomics
    • Point-of Care Dx Platform
    • Precision Public Health
    • Rare Disease Diagnosis
    • Resilience
    • Robust Clinical Decision Support Tools
    • Wellness and Aging Showcase

See 2019 Agenda highlights:

    • Five tracks will showcase sessions on the latest advancements in precision medicine which include, but are not limited to:
      • AI & Data Science Showcase
      • Clinical & Research Tools Showcase
      • Clinical Dx Showcase
      • Creating Clinical Value with Liquid Biopsy ctDNA, etc.
      • Digital Health/Health and Wellness
      • Digital Phenotyping
      • Diversity in Precision Medicine
      • Drug Development (PPPs)
      • Early Days of Life Sequencing
      • Emerging Technologies in PM
      • Emerging Therapeutic Showcase
      • FDA Efforts to Accelerate PM
      • Gene Editing / CRISPR
      • Genomic Profiling Showcase
      • Immunotherapy Sessions & Showcase
      • Implementation into Health Care Delivery
      • Large Scale Bio-data Resources to Support Drug Development (PPPs)
      • Microbial Profiling Showcase
      • Microbiome
      • Neoantigens
      • Next-Gen. Workforce of PM
      • Non-Clinical Services Showcase
      • Pharmacogenomics
      • Point-of Care Dx Platform
      • Precision Public Health
      • Rare Disease Diagnosis
      • Resilience
      • Robust Clinical Decision Support Tools
      • Wellness and Aging Showcase
  • Luminary and Pioneer Awards, honoring individuals who contributed, and continue to contribute, to the field of Precision Medicine
  • 2000+ multidisciplinary attendees, from across the entire spectrum of healthcare, representing different types of companies, technologies, and medical centers with leadership roles in precision medicine
Get Updates
Sign up for occasional updates on upcoming conferences, news, and other information.
We respect your privacy and will never share your email with anyone.
Something went wrong, please verify your input.
Thank you for signing up!

Don't Miss Important Precision Medicine Updates

PMWC is the most comprehensive precision medicine conference. To receive the lastest news and updates from the field, subscribe to the newsletter here.

View the top 3 talks from PMWC here (password: top-videos).